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To overcome the shortcomings of traditional image restoration model and total variation image restora-
tion model, we propose a novel Hopfield neural network-based image restoration algorithm with adaptive
mixed-norm regularization. The new error function of image restoration combines the L2-norm and L1-
norm regularization types. A method of calculating the adaptive scale control parameter is introduced.
Experimental results demonstrate that the proposed algorithm is better than other algorithms with single
norm regularization in the improvement of signal-to-noise ratio (ISNR) and vision effect.
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Image restoration deals with the recovery of an origi-
nal scene from its degraded image[1−3]. Since neural
network-based image restoration does not generate ring-
ing effect which relates to matrix inversion for solving
Euler-Lagrange equation, it can restore a higher qual-
ity image. Most neural network-based image restora-
tion algorithms use L2-norm as regularization item
and an isotropic regularizing operator such as Laplace
operator[4−10]. We call it traditional image restoration
model here. Although this type of regularization based
on L2-norm and Laplace operator has a good ability to
smooth and remove noise, it blurs the edges of restored
image more or less and the vision effect is not very good.
To preserve edges, a total variation-based image restora-
tion model is proposed[11−15]. However, the model is
mainly suitable for the images with smooth patch and
evident edge. By experiments, we find that the restored
image appears ladder effect when image dissatisfy this
condition, for example, the change of slope edge is slow.
Sometimes, noise can be wrongly considered as false edge.
To overcome these shortcomings of the two image restora-
tion models, we propose a novel Hopfield neural network-
based image restoration algorithm using adaptive mixed-
norm regularization.

The image degradation model in a matrix operation
can be expressed as

g = Hf + n, (1)

where g, f, and n are vectors corresponding to the lexi-
cographically organized degraded image, original image,
and additive noise, respectively, H is the blur matrix
corresponding to a point spread function (PSF). For the
case of a convolution system, H usually takes the form
of a block Toeplitz matrix. Commonly, image restora-
tion is to minimize an error measurement such as the
constrained squared error function:
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where ‖·‖2 is L2 norm, f̂ is the restored image estimate

vector, λ is the regularizing parameter, D is a block
Toeplitz matrix generated by the regularizing operator.
In this image restoration model, the regularizing operator
is a Laplace operator, which can be written as[16]
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. (3)

The error function based on total variation is given by
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where ‖·‖1 is L1 norm, ∇ is the gradient operator,

|∇f| =
√

(∂f/∂x)2 + (∂f/∂y)2. In this image restoration
model, the action of smoothing filter is not imposed so
that the edge information can be preserved.

For obtaining a better solution to the image restora-
tion, we propose to combine the benefits of the tradi-
tional model and total variation model. To fit Hopfield
neural network based processing, a novel error function
with mixed-norm regularization is proposed:
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where η is a regularizing scale control parameter and its
span is [0, 1]. The image restoration model with mixed-
norm regularization is aimed to overcome the shortcom-
ings and keep the advantages of the two above-mentioned
models. Blurring of image detail, false edge, and ladder
effect can be removed to a certain extent, and a better
image restoration effect can be achieved.

Hopfield neural network method is designed to min-
imize a quadratic programming problem. The energy
function of Hopfield neural network has the following
form:

EHNN = −
1

2
f̂TWf̂ − bTf + c, (6)

where W is the interconnection weight matrix and the
(i, j)th element of W corresponds to the interconnection
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strength between neurons (pixels) i and j in the network,
the term c is a constant term of the energy function. The
vector b corresponds to the bias input to each neuron.
The discrete form can be written as

EHNN = −
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where wij is the interconnection weight between pixels i
and j, bi is the bias input to neuron (pixel) i, and the
image size is M×N , L = MN .

For combining the total variation regularization and
the energy function of Hopfield neural network, the non-
linear gradient operator is decomposed to the sum of lin-
ear operators. An approximation is proposed as

|∇f | ≈ |∂f/∂x| + |∂f/∂y| . (8)

The gradient operators in four directions can be written
as
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The discrete form of error function can be written as
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where h and d are the elements of the matrices H and
D, respectively. Equation (10) is transformed to be
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where GE,p = sign
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, sign (·) is a sign function.

Comparing Eq. (7) with the corresponding Eq. (11),
the interconnection weights wij and bias inputs bi are
shown to be
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When η = 1, the mixed-norm model transforms to the
traditional model. When η = 0, the mixed-norm model
transforms to the total variation model.

We hope the values of scale control parameter η should
be determined adaptively using the local characteristic
of each pixel, and η is a larger value for the smooth or
flat areas, a smaller value for the edge or texture regions,
and an intermediate value for slope edge to reduce ladder
effect. We propose the following method to calculate the
adaptive η value.

Ain = max (0, (σin − σn)) , (13)

Aout = max (0, (σout − σn)) , (14)

B = min (Ain, Aout) , (15)

η (i, j) = 1 −

[
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1

k
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k = 1, 2, 3, · · · , (16)

where σn, σin, and σout are the estimated noise stan-
dard variance, local standard variances of image non-
boundary and boundary areas of the estimated image,
respectively. The variance of the noise can be estimated
from smooth areas of degraded image. The local standard
variance of image boundary is calculated by zero-adding
method commonly, but this method may bring obvious
deviation. So we set an non-boundary area whose size
is (1 + P : M − P ) × (1 + Q : N − Q), and other image
area is set as boundary area, as shown in Fig. 1.

The local standard variance in the whole estimated im-
age f̂ including the non-boundary and boundary areas
can be calculated using a (2P + 1)×(2Q + 1) region cen-
tered at pixel (i,j) by
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where f̂ (i, j) is the pixel gray value of the estimated im-

age f̂ , and M
[

f̂ (i, j)
]

is the local mean obtained by

Fig. 1. Image non-boundary and boundary areas.
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In the mixed-norm model, bi changes along with the
network state. And the modified updating rule is pre-
sented below.

{ For i = 1 : 1 : L
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According to Eq. (12), calculate bi (t + 1) and ∆E2 =

−
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If ∆E1 = 0, it means ∆E1 +∆E2 = 0 and the network
energy is stable. The final restored image is formed.

If ∆E1 +∆E2 < 0, bi (t + 1) is given to bi (t), repeat{ }
If ∆E1 + ∆E2 > 0, keep bi (t), repeat{ }
Experiments are performed to compare the proposed

algorithm with the traditional algorithm and total vari-
ation algorithm. To evaluate performance of the algo-
rithms, the improvement in signal-to-noise ratio (ISNR)
is defined as

ISNR = 10log10
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where f , g, and f̂ are the original, degraded, and restored
images, respectively. In our experiments, the original test
images are blurred by a Gaussian PSF whose size is 5×5
with the standard variance of 2.0 and added Gaussian
white noise with various signal-to-noise ratios (SNRs).
The regularizing parameter λ is 0.1. The value of k in
Eq. (16) is 2. The local standard variance of the image
is estimated using a 3×3 window. In other words, P and
Q are equal to 1. The restored results are shown in Figs.
2, 3 and Table 1.

Fig. 2. Experimental results for cameraman’s face (cropped
to 32×32 for easier comparison). (a) Original image; (b)
degraded image (SNR = 30 dB); (c) restored image using
the traditional algorithm; (d) restored image using the total
variation algorithm; (e) restored image using our algorithm.

Fig. 3. Experimental results for satellite image. (a) Original
image; (b) degraded image (SNR = 30 dB); (c) restored im-
age using the traditional algorithm; (d) restored image using
the total variation algorithm; (e) restored image using our
algorithm.

Table 1. ISNRs of Restored Image Obtained by
Different Algorithms

Image SNR Traditional Total Variation Our

Cameraman’s 30 dB 4.1443 4.7966 5.2113

Face 25 dB 3.6617 3.2812 4.9331

30 dB 4.1195 4.8273 5.2081
Satellite

25 dB 3.9665 4.2025 4.8208

30 dB 1.6650 2.0384 2.2313
Lena

25 dB 1.3884 1.5893 1.7544

30 dB 2.3946 2.9921 3.3441
Peppers

25 dB 2.0011 1.0984 2.6609

It is seen that our method works better than the
method with a single norm. From Table 1, we can see
that the ISNR using total variation in “Lena” image
is quite close to the results obtained by the proposed
method. This image has plenty of edge information such
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as hat, hair, face, and so on. The total variation algo-
rithm mainly preserves the image edges. And to some
extent, the value selection of k in experiments affects the
restoration effect using our algorithm. So the ISNR of
total variation algorithm is close to that of our algorithm.

In conclusion, the algorithm proposed in this letter can
remove noise and false edge in the smooth regions, pre-
serve edge information, and prevent blur in the edge re-
gions, and reduce ladder effect in slope edge regions. Ex-
perimental results demonstrate the effectiveness of the
proposed algorithm. Still much improvement is possible,
such as the parameters k, λ chosen adaptively, η chosen
more exactly, and a faster updating rule. These will be
further studied in the future.
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